LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hàm số y = f(x) = x + 1. Với mỗi x ≥ 1, kí hiệu S(x) là diện tích của hình thang giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng vuông góc với Ox tại các điểm có hoành độ 1 và x. a) Tính S(3). b) Tính S(x) với mỗi x ≥ 1. c) Tính S'(x). Từ đó suy ra S(x) là một nguyên hàm của f(x) trên [1; +∞). d) Cho F(x) là một nguyên hàm của hàm số f(x). Chứng tỏ rằng F(3) – F(1) = S(3). Từ đó nhận xét về cách tính S(3) khi biết một nguyên hàm của f(x).

Cho hàm số y = f(x) = x + 1. Với mỗi x ≥ 1, kí hiệu S(x) là diện tích của hình thang giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng vuông góc với Ox tại các điểm có hoành độ 1 và x.

a) Tính S(3).

b) Tính S(x) với mỗi x ≥ 1.

c) Tính S'(x). Từ đó suy ra S(x) là một nguyên hàm của f(x) trên [1; +∞).

d) Cho F(x) là một nguyên hàm của hàm số f(x). Chứng tỏ rằng F(3) – F(1) = S(3). Từ đó nhận xét về cách tính S(3) khi biết một nguyên hàm của f(x).

1 trả lời
Hỏi chi tiết
16
0
0
Nguyễn Thị Sen
11/09 13:10:13

a)

Gọi A(1; 0), B(3; 0), C, D lần lượt là giao điểm của đường thẳng x = 3; x = 1 với đường thẳng y = x + 1.

Khi đó C(3; 4), D(1; 2).

Ta có S(3) là diện tích của hình thang vuông ABCD với đáy bé AD = 2; đáy lớn BC = 4 và đường cao AB = 2.

Do đó \(S\left( 3 \right) = {S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2 + 4} \right).2}}{2} = 6\).

b)

Tương tự như câu a, ta có A(1; 0), B(x; 0), C(x; x + 1), D(1; 2).

Ta có S(x) là diện tích hình thang ABCD với đáy bé AD = 2, đáy lớn BC = x + 1 và đường cao AB = x – 1.

Do đó \(S\left( x \right) = {S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {x + 3} \right)\left( {x - 1} \right)}}{2} = \frac{{{x^2} + 2x - 3}}{2}\), x ≥ 1.

c) Có \(S'\left( x \right) = {\left( {\frac{{{x^2} + 2x - 3}}{2}} \right)^\prime } = \frac{2} = x + 1 = f\left( x \right)\).

Do đó S(x) là một nguyên hàm của f(x) trên [1; +∞).

d) Vì F(x) là nguyên hàm của hàm số f(x) nên

\(F\left( x \right) = \int {\left( {x + 1} \right)dx = \frac{{{x^2}}}{2} + x + C} \).

Do đó \(F\left( 3 \right) = \frac{{{3^2}}}{2} + 3 + C = \frac{2} + C\); \(F\left( 1 \right) = \frac{{{1^2}}}{2} + 1 + C = \frac{3}{2} + C\).

Suy ra \(F\left( 3 \right) - F\left( 1 \right) = \frac{2} + C - \left( {\frac{3}{2} + C} \right) = 6 = S\left( 3 \right)\).

Để tính S(3), ta cần tìm nguyên hàm F(x) của f(x) và tính S(3) = F(3) – F(1).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư