Hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), AB = AD = 2cm, DC = 4cm. Tính các góc của hình thang.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có \(\widehat A = \widehat D = 90^\circ \))
Suy ra: BH // AD
Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: Δ∆BHC vuông cân tại H
Do đó: \(\widehat {HBC} = \widehat C\)
Lại có: \(\widehat {HBC} + \widehat C = 90^\circ \)(tính chất tam giác vuông)
⇒ \(\widehat C = 45^\circ \)
Mà \[\widehat B + \widehat C = 180^\circ \](2 góc trong cùng phía bù nhau)
⇒ \[\widehat B = 180^\circ - 45^\circ = 135^\circ \].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |