Cho tam giác ABC Từ D trên cạnh AB, kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF = DB. Gọi M là giao điểm của DF và BC. Chứng minh \(\frac = \frac\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ∆ABC có DE // BC
Áp dụng định lý Talet ta có: \(\frac = \frac\)
Suy ra: \(\frac = \frac\)
Vì CF = BD (giả thiết) nên \(\frac = \frac\)(1)
Xét ∆DEF có CM // DE (vì DE // BC)
Theo Talet ta có: \(\frac = \frac\) (2)
Từ (1) và (2) suy ra: \(\frac = \frac\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |