Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
Tia AM là tia phân giác của góc BAC và AM \( \bot \) BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì ∆AMB = ∆AMC nên: MB = MC (hai cạnh tương ứng);
\(\widehat {BAM}\) = \(\widehat {CAM}\), \(\widehat {AMB}\) = \(\widehat {AMC}\) (hai góc tương ứng)
Do tia AM nằm trong góc BAC và \(\widehat {BAM}\) = \(\widehat {CAM}\) nên tia AM là tia phân giác của góc BAC
Ta có \(\widehat {AMB}\) + \(\widehat {AMC}\) = 180o (hai góc kề bù) và \(\widehat {AMB}\) = \(\widehat {AMC}\) nên \(\widehat {AMB}\) = \(\widehat {AMC}\) = 90o.
Vậy AM \( \bot \) BC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |