Cho tam giác ABC đều cạnh a. Gọi D là điểm đối xứng của A qua BC. M là một điểm bất kì. Khẳng định nào dưới đây đúng?
A. \(\overrightarrow {MB} .\overrightarrow {MC} = A{M^2} + \overrightarrow {AM} .\overrightarrow {AD} + \frac{{{a^2}}}{2}\).
B. \(\overrightarrow {MB} .\overrightarrow {MC} = A{M^2} - \overrightarrow {AM} .\overrightarrow {AD} + {a^2}\).
C. \(\overrightarrow {MB} .\overrightarrow {MC} = A{M^2} + \overrightarrow {AM} .\overrightarrow {AD} + {a^2}\).
D. \(\overrightarrow {MB} .\overrightarrow {MC} = A{M^2} - \overrightarrow {AM} .\overrightarrow {AD} + \frac{{{a^2}}}{2}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng: D
D đối xứng với A qua BC
⇒ BC là đường trung trực của AD
⇒ BA = BD; CA = CD
mà BA = CA(ΔABC đều) ⇒ BA = BD = CA = CD
⇒ ABDC là hình thoi
⇒ \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)
Xét \(\overrightarrow {MB} .\overrightarrow {MC} = \left( {\overrightarrow {MA} + \overrightarrow {AB} } \right)\left( {\overrightarrow {MA} + \overrightarrow {AC} } \right)\)
\( = M{A^2} + \overrightarrow {MA} .\overrightarrow {AC} + \overrightarrow {MA} .\overrightarrow {AB} + \overrightarrow {AB} .\overrightarrow {AC} \)
\( = M{A^2} + \overrightarrow {MA} \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \overrightarrow {AB} .\overrightarrow {AC} \)
\( = M{A^2} + \overrightarrow {MA} .\overrightarrow {AD} + AB.AC.\cos \widehat {BAC}\)
\( = M{A^2} + \overrightarrow {MA} .\overrightarrow {AD} + a.a.\cos 60^\circ \)
\( = A{M^2} - \overrightarrow {AM} .\overrightarrow {AD} + \frac{{{a^2}}}{2}\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |