Cho tam giác ABC, có M, N, K, I lần lượt là trung điểm của AB, AC, MB, MC.
a) Cho MN = 2,5 cm. Tính BC.
b) Chứng minh MNIK là hình bình hành.
c) Tam giác ABC cần điều kiện gì để MNIK là hình chữ nhật.
d) SABC = a. Tính SAMN theo a.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
) Xét Δ ABC có:
M là trung điểm cạnh AB
N là trung điểm cạnh AC
⇒ MN là đường trung bình Δ ABC
⇒ MN = \(\frac{1}{2}\)BC và MN // BC (1)
⇒ BC = 2.MN = 2.2,5 = 5 cm.
b) ΔMBC có:
MK = KB (K trung điểm của MB)
MI = IC (I trung điểm của IC)
⇒ IK là đường trung bình ΔMBC, nên IK // BC và IK = \(\frac{1}{2}\)BC (2)
Từ (1), (2) suy ra MN // KI và MN = KI
⇒ Tứ giác MNIK là hình bình hành.
c) Ta có: tứ giác MNIK là hình bình hành (câu b). Để hình bình hành MNIK là hình chữ nhật thì \(\widehat {MKI} = 90^\circ \)
⇔ IK ⊥KM
⇔ IK ⊥ AB
⇔ BC ⊥ AB (vì IK // BC)
⇔ ΔABC vuông tại B.
d) Kẻ đường cao AH của tam giác ABC và AMN
Ta có: \(\frac{{{S_{ABC}}}}{{{S_{AMN}}}} = \frac{{\frac{1}{2}.AH.BC}}{{\frac{1}{2}.AH.MN}} = \frac = 2\)
⇒ SAMN = \(\frac{1}{2}\)SABC = \(\frac{a}{2}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |