LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R) đường kính AB cố định. Dây CD di động vuông góc với AB tại H giữa A và O. Lấy điểm F thuộc cung AC nhỏ; BF cắt CD tại E, AF cắt tia DC tại I. 1. Chứng minh: tứ giác AHEF nội tiếp. 2. Chứng minh: HA.HB = HE.HI. 3. Đường tròn nội tiếp tam giác IEF cắt AE tại M. Chứng minh M thuộc đường tròn (O; R). 4. Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất.

Cho đường tròn (O; R) đường kính AB cố định. Dây CD di động vuông góc với AB tại H giữa A và O. Lấy điểm F thuộc cung AC nhỏ; BF cắt CD tại E, AF cắt tia DC tại I.

1. Chứng minh: tứ giác AHEF nội tiếp.

2. Chứng minh: HA.HB = HE.HI.

3. Đường tròn nội tiếp tam giác IEF cắt AE tại M. Chứng minh M thuộc đường tròn (O; R).

4. Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất.

1 trả lời
Hỏi chi tiết
8
0
0
Nguyễn Thị Nhài
11/09 13:09:02

1) Ta có: \(\widehat {AFB} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

Tứ giác AHEF có: \(\widehat {AFE} + \widehat {AHE} = 90^\circ + 90^\circ = 180^\circ \), mà hai góc này ở vị trí đối nhau

Nên AHEF là tứ giác nội tiếp đường tròn đường kính AE.

2) Do AHEF nội tiếp nên \[\widehat {IAH} = \widehat {BEH}\]

Xét ΔHAI và ΔHEB có:

\[\widehat {IAH} = \widehat {BEH}\]

\(\widehat {AHI} = \widehat {EHB} = 90^\circ \)

Suy ra: ΔHAI ∽ ΔHEB (g.g)

⇒ \(\frac = \frac\)

⇒ HA.HB = EH.HI

3) Ta có: \(\widehat {IFE} = 90^\circ \)⇒ F thuộc đường tròn đường kính (IE)

Gọi G là trung điểm của IE suy ra ΔIFE nội tiếp đường tròn tâm G.

Đường tròn ngoại tiếp tam giác IEF cắt AE tại M nên M thuộc đường tròn ngoại tiếp tam giác IEF hay IFEM nội tiếp đường tròn (G)

⇒ \(\widehat {IME} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn) ⇒ IM ⊥ ME (1)

Mà ΔIAB có hai đường cao IH, BF cắt nhau tại E

⇒ E là trực tâm suy ra AE ⊥ IM (2)

Từ (1) và (2) suy ra ME, AE trùng nhau suy ra \(\widehat {AMB} = 90^\circ \)⇒ M ∈ (O)

4) Áp dụng định lý Pitago vào ΔOHD ⊥ H ta có:

R2 = OD2 = HO2 + HD2

⇒ 2R2 = 2HO2 + 2HD2

= (HO + HD)2 + (HO – HD)2 ≥ (HO + HD)2

⇒ HO + HD ≤ \(R\sqrt 2 \)

Chu vi tam giác OHD min = HO + HD + OD = \(R\sqrt 2 \) + R

Dấu “=” xảy ra khi: OH + HD = \(R\sqrt 2 \) và có OH2 + HD2 = R2

Suy ra: OH = HD = \(\frac{R}{{\sqrt 2 }}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư