Cho parabol (P): y = x2 và đường thẳng (d): y = −x + 2.
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ Oxy.
b) Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) bằng phép tính.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có:
(P) đi qua các điểm có tọa độ như bảng sau:
x | –2 | –1 | 0 | 1 | 2 |
y = x2 | 4 | 1 | 0 | 1 | 4 |
Đỉnh của (P) là O(0;0)
(d) đi qua các điểm có tọa độ (0;2), (2;0)
Ta có đồ thị như sau:
b) Xét phương trình hoành độ giao điểm:
x2 = –x + 2
⇔ x2 + x – 2 = 0
⇔ x2 + 2x – x – 2 = 0
⇔ x(x + 2) – (x + 2) = 0
⇔ (x + 2)(x – 1) = 0
⇔ \(\left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}y = 4\\y = 1\end{array} \right.\)
Vậy hai đồ thị cắt nhau tại hai điểm phân biệt A(−2; 4) và B(1; 1).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |