Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H. a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O). b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).

Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.

a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O).

b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).

1 Xem trả lời
Hỏi chi tiết
45
0
0
Phạm Văn Bắc
11/09/2024 13:10:01

a. Gọi O là trung điểm AHXét tam giác AEH vuông tại H: O là trung điểm AH

⇒ AO = OH = OE Chứng minh tương tự ⇒ AO = OH = OD⇒ OA = OH = OD = OEVậy A, D, H, E ∈ (O) với O là trung điểm AHb. Có: BD giao CE = H ⇒ H là trực tâm tam giác ABC⇒ AH ⊥ BCMà: CE ⊥ AB⇒ \(\widehat {EAH} = \widehat {ECB}\) (1) (hai góc có cạnh tương ứng vuông góc)Có: OA = OE⇒ tam giác AOE cân tại O⇒ \(\widehat {AEO} = \widehat {EAO}\)(2)Chứng minh tương tự ⇒ tam giác EMC cân tại M⇒ \(\widehat {ECM} = \widehat {CEM}\)(3)(1); (2); (3) ⇒ \(\widehat {AEO} = \widehat {CEM}\)Mà: \(\widehat {AEO} + \widehat {OEC} = \widehat {AEC} = 90^\circ \)

⇒ \(\widehat {OEC} + \widehat {CEM} = \widehat {OEM} = 90^\circ \)⇒ EM là tiếp tuyển của (O).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×