Bài tập  /  Bài đang cần trả lời

Với tất cả giá trị nào của \(m\) thì hàm số \(y = m{x^4} + \left( {m - 1} \right){x^2} + 1 - 2m\) chỉ có một cực trị

Với tất cả giá trị nào của \(m\) thì hàm số \(y = m{x^4} + \left( {m - 1} \right){x^2} + 1 - 2m\) chỉ có một cực trị

1 Xem trả lời
Hỏi chi tiết
33
0
0
Nguyễn Thị Thương
11/09/2024 13:17:38

Đáp án: \(\left[ {\begin{array}{*{20}{l}}{m \le 0}\\{m \ge 1}\end{array}} \right.\)

Phương pháp giải:

- Tính đạo hàm.

- Giải phương trình \(y' = 0\)

- Đưa phương trình \(y' = 0\) về dạng tích, tìm điều kiện để phương trình \(y' = 0\) có 1 nghiệm duy nhất.

Giải chi tiết:

+ \(y' = 4m{x^3} + 2\left( {m - 1} \right)x = 2x\left( {2m{x^2} + m - 1} \right)\)

+ \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{2m{x^2} + m - 1 = 0{\mkern 1mu} {\mkern 1mu} \left( 1 \right)}\end{array}} \right.\)

+ Hàm số chỉ có 1 cực trị \( \Leftrightarrow \left( 1 \right)\) vô nghiệm hoặc có nghiệm kép \( \Rightarrow \Delta \le 0 \Leftrightarrow - 2m\left( {m - 1} \right) \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le 0}\\{m \ge 1}\end{array}} \right.\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×