Một trung tâm tổ chức sự kiện có một phòng tổ chức lễ cưới với hai kiểu bàn ăn: bàn hình chữ nhật ngồi 6 người với giá thuê 200 nghìn đồng và bàn tròn ngồi 10 người với giá thuê 300 nghìn đồng. Anh Nam muốn thuê phòng để tổ chức đám cưới với 250 khách mời. Căn phòng chỉ chứa được tối đa 35 bàn các loại và chỉ có 15 bàn hình chữ nhật. Hỏi anh Nam phải thuê mỗi loại bàn bao nhiêu để giảm thiểu tối đa chi phí mà vẫn đáp ứng được các yêu cầu trên.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi x và y lần lượt là số bàn hình chữ nhật và số bàn tròn cần thuê.
Chi phí thuê bàn là: 200x + 300y (nghìn đồng).
Hệ bất phương trình ràng buộc x và y là
hay
Miền nghiệm của hệ bất phương trình này là miền tứ giác ABCD được tô màu như hình vẽ dưới đây:
Ở đây, d1: x + y = 35 và d2: 3x + 5y = 125.
Các điểm cực biên là: A(0; 35), B(0; 25), C(15; 16), D(15; 20).
Bài toán yêu cầu tìm giá trị nhỏ nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị nhỏ nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các điểm cực biên ta được:
F(0; 35) = 200.0 + 300.35 = 10 500;
F(0; 25) = 200.0 + 300.25 = 7 500;
F(15; 16) = 200.15 + 300.16 = 7 800;
F(15; 20) = 200.15 + 300.20 = 9 000.
Giá trị nhỏ nhất của F(x; y) bằng 7 500 tại điểm cực biên B(0; 25). Phương án tối ưu là (0; 25).
Vậy anh Nam chỉ cần thuê 25 bàn tròn để giảm thiểu tối đa chi phí mà vẫn đáp ứng được các yêu cầu trên.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |