Gọi d là đồ thị của hàm số y = f(x) = 6 – 2x. Kí hiệu S1 là diện tích hình phẳng giới hạn bởi d, trục hoành và trục tung, S2 là diện tích hình phẳng giới hạn bởi d, trục hoành và đường thẳng x = 5 (Hình 1).
a) Tính S1 và so sánh với \(\int\limits_0^3 {f\left( x \right)dx} \).
b) Tính S2 và so sánh với \(\int\limits_3^5 {f\left( x \right)dx} \).
c) So sánh \(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} \) với S1 + S2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi A(3; 0), B(0; 6), C(5; 0), E(5; −4).
Ta có S1 chính là diện tích của tam giác vuông OAB với OA = 3, OB = 6.
Do đó \({S_1} = {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.3.6 = 9\).
Ta có \(\int\limits_0^3 {f\left( x \right)dx} \)\( = \int\limits_0^3 {\left( {6 - 2x} \right)dx} \)\[ = \left. {\left( {6x - {x^2}} \right)} \right|_0^3\] = 9.
Vậy \({S_1} = \int\limits_0^3 {f\left( x \right)dx} \).
b) Ta có S2 chính là diện tích của tam giác vuông ACE với AC = 2, CE = 4.
Do đó \({S_2} = {S_{\Delta ACE}} = \frac{1}{2}AC.CE = \frac{1}{2}.2.4 = 4\).
Ta có \(\int\limits_3^5 {f\left( x \right)dx} \)\( = \int\limits_3^5 {\left( {6 - 2x} \right)dx} \)\[ = \left. {\left( {6x - {x^2}} \right)} \right|_3^5\] = 5 – 9 = −4.
Do đó \({S_2} = - \int\limits_3^5 {f\left( x \right)dx} \).
c) Ta có \(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} \)= \(\int\limits_0^5 {\left| {6 - 2x} \right|dx} \)\( = \int\limits_0^3 {\left| {6 - 2x} \right|dx} + \int\limits_3^5 {\left| {6 - 2x} \right|dx} \)
\( = \int\limits_0^3 {\left( {6 - 2x} \right)dx} + \int\limits_3^5 {\left( {2x - 6} \right)dx} \)\( = \left. {\left. {\left( {6x - {x^2}} \right)} \right|_0^3 + \left( {{x^2} - 6x} \right)} \right|_3^5\)
= 9 − 5 + 9 = 13.
Có S1 + S2 = 9 + 4 = 13 = \(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} \).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |