a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x) = x2 + 3x + 2 tùy theo các khoảng của x.
b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 3 tùy theo các khoảng của x.
c) Từ đó rút ra mối quan hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a tùy theo các khoảng của x trong trường hợp ∆ > 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Quan sát Hình 21, ta thấy
+ Trên khoảng (– 2; – 1), phần parabol nằm hoàn toàn phía dưới trục hoành nên tam thức bậc hai f(x) = x2 + 3x + 2 < 0.
+ Trên các khoảng (– ∞; – 2) và (– 1; + ∞), phần parabol nằm hoàn toàn phía trên trục hoành nên tam thức bậc hai f(x) = x2 + 3x + 2 > 0.
b) Quan sát Hình 22, ta thấy:
+ Trên khoảng (1; 3), phần parabol nằm hoàn toàn phía trên trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 3 > 0.
+ Trên các khoảng (– ∞; 1) và (3; + ∞), phần parabol nằm hoàn toàn phía dưới trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 3 < 0.
c) Nếu ∆ > thì f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (– ∞; x1) và (x2; + ∞); f(x) trái dấu với hệ số a với mọi x thuộc khoảng (x1; x2), trong đó x1, x2 là hai nghiệm của f(x) và x1 < x2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |