Bài tập  /  Bài đang cần trả lời

Giải các bất phương trình sau: a) 2x2 + 3x + 1 ≥ 0; b) – 3x2 + x + 1 > 0; c) 4x2 + 4x + 1 ≥ 0; d) – 16x2 + 8x – 1 < 0; e) 2x2 + x + 3 < 0; g) – 3x2 + 4x – 5 < 0.

Giải các bất phương trình sau:

a) 2x2 + 3x + 1 ≥ 0;

b) – 3x2 + x + 1 > 0;

c) 4x2 + 4x + 1 ≥ 0;

d) – 16x2 + 8x – 1 < 0;

e) 2x2 + x + 3 < 0;

g) – 3x2 + 4x – 5 < 0.

1 Xem trả lời
Hỏi chi tiết
31
0
0
Đặng Bảo Trâm
11/09/2024 14:16:43

a) 2x2 + 3x + 1 ≥ 0

Tam thức bậc hai 2x2 + 3x + 1 có ∆ = 32 – 4 . 2 . 1 = 1 > 0 nên tam thức này có hai nghiệm x1 = – 1, x2 = −12  và có hệ số a = 2 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 2x2 + 3x + 1 không âm là −∞;−1∪−12;+∞ .

Vậy tập nghiệm của bất phương trình 2x2 + 3x + 1 là −∞;−1∪−12;+∞ .

b) – 3x2 + x + 1 > 0

Tam thức bậc hai – 3x2 + x + 1 có ∆ = 12 – 4 . (– 3) . 1 = 13 > 0 nên tam thức này có hai nghiệm x1=1−136,x2=1+136  và hệ số a = – 3 < 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – 3x2 + x + 1 mang dấu “+” là 1−136;1+136 .

Vậy tập nghiệm của bất phương trình – 3x2 + x + 1 là 1−136;1+136 .

c) 4x2 + 4x + 1 ≥ 0

Tam thức bậc hai 4x2 + 4x + 1 có ∆ = 42 – 4 . 4 . 1 = 0 nên tam thức này có nghiệm kép là x = −12  và hệ số a = 4 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 4x2 + 4x + 1 > 0 với mọi x∈ℝ\−12  và 4x2 + 4x + 1 = 0 tại x = −12 .

Do đó bất phương trình đã cho có vô số nghiệm.

Vậy tập nghiệm của bất phương trình là ℝ .

d) – 16x2  + 8x – 1 < 0

Tam thức bậc hai – 16x2 + 8x – 1 < 0 có ∆ = 82 – 4 . (– 16) . (– 1) = 0 nên tam thức có nghiệm kép là x = 14  và hệ số a = – 16 < 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – 16x2 + 8x – 1 mang dấu “–” là ℝ\14 .

Vậy tập nghiệm của bất phương trình – 16x2 + 8x – 1 là ℝ\14 .

e) 2x2 + x + 3 < 0

Tam thức bậc hai 2x2 + x + 3 có ∆ = 12 – 4 . 2 . 3 = – 23 < 0 và hệ số a = 2 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 2x2 + x + 3 > 0 (cùng dấu với a) với mọi x∈ℝ .

Vậy bất phương trình 2x2 + x + 3 < 0 vô nghiệm.

g) – 3x2 + 4x – 5 < 0

Tam thức bậc hai – 3x2 + 4x – 5 có ∆ = 42 – 4 . (– 3) . (– 5) = – 44 < 0 và hệ số a = – 3.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy – 3x2 + 4x – 5 < 0 (cùng dấu với a) với mọi x∈ℝ .

Vậy tập nghiệm của bất phương trình – 3x2 + 4x – 5 < 0 là ℝ .

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×