Tìm GTNN, GTLN của A = x2+1x2−x+1 .
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Nhận xét: x2 – x + 1 = x−122+34>0 do vậy A luôn xác định
Ta có: A = x2+1x2−x+1
⇔ A(x2 – x + 1) = x2 + 1
⇔ x2(A – 1) – x.A + (A – 1) = 0
Tìm GTLN, GTNN tức là tồn tại giá trị x thỏa mãn min A và max A
Vậy thì điều kiện cần là phương trình trên có nghiệm, tức là:
∆ = A2 – 4(A – 1)(A – 1) = A2 – 4(A2 – 2A + 1) = –3A2 + 8A – 4 ≥ 0
⇔ – (3A2 – 2A) + (6A – 4) ≥ 0
⇔ – A(3A – 2) + 2(3A – 2) ≥ 0
⇔ (3A – 2)(2 – A) ≥ 0
⇔ 3A−2≥02−A≥03A−2≤02−A≤0
⇔ 23≤A≤2A≤23A≥2
Vậy 23≤A≤2 hay GTNN của A là 23 khi x = – 1.
GTLN của A là 2 khi x = 1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |