cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC , trên tia đối của tia MB lấy điểm D sao cho MD = MB.
1) Chứng minh AD = BC.
2) Chứng minh CD vuông góc với AC.
3) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh ∆ABM = ∆CNM.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Xét ΔCBM và ΔADM có:
AM = MC (giả thtết)
CMB^=AMD^( đối đỉnh)
BM = MD (giả thiết)
⇒ ΔCBM = ΔADM (c.g.c)
Suy ra: BC = DA (hai cạnh tương ứng)
2) Xét ΔABM và ΔCDM có:
AM = CM (giả thiết)
CMD^=AMB^(đối đỉnh)
BM = DM (giả thiết)
⇒ ΔABM = ΔCDM (c.g.c)
BAM^=DCM^= 90°(hai góc tương ứng) (đpcm)
⇒ DC⊥AC (đpcm)
3) Ta có BN // AC mà AC ⊥ DC ⇒ BN ⊥ DC ⇒ BND^ = 90°
AB // CD (do cùng ⊥AC)
Xét ΔABC và ΔNBC có:
ABC ^=NCB^ (hai góc ở vị trí so le trong)
BC chung
ACB ^=NBC^(do BN//AC nên đó là hai góc ở vị trí so le trong)
⇒ ΔABC = ΔNBC (g.c.g)
⇒ AB = NC (hai cạnh tương ứng)
Xét ΔABM và ΔCNM có:
AB = CN (cmt)
BAM^=NCM^= 90°
AM = CM (giả thiết)
⇒ ΔABM = ΔCNM (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |