Cho đường thẳng ∆ có phương trình tổng quát ax + by + c = 0 (a hoặc b khác 0). Nêu nhận xét về vị trí tương đối của đường thẳng ∆ với các trục tọa độ trong mỗi trường hợp sau:
a) b = 0 và a ≠ 0.
b) b ≠ 0 và a = 0.
c) b ≠ 0 và a ≠ 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Nếu b = 0 và a ≠ 0 thì phương trình đường thẳng ∆ trở thành ax + c = 0.
Khi đó đường thẳng ∆ song song hoặc trùng với trục Oy và cắt trục Ox tại điểm \(\left( { - \frac{c}{a};\,0} \right)\)
b) Nếu b ≠ 0 và a = 0 thì phương trình đường thẳng ∆ trở thành by + c = 0.
Khi đó đường thẳng ∆ song song hoặc trùng với trục Ox và cắt trục Oy tại điểm \(\left( {0;\, - \frac{c}{b}} \right)\)
c) Nếu b ≠ 0 và a ≠ 0 thì phương trình đường thẳng ∆ có thể viết thành
\(y = - \frac{a}{b}x - \frac{c}{b}\).
Khi đó, đường thẳng ∆ là đồ thị hàm số bậc nhất \(y = - \frac{a}{b}x - \frac{c}{b}\) với hệ số góc \(k = - \frac{a}{b}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |