Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\)
⇔ \(\left\{ \begin{array}{l}\sin 3x = 0\\\cos x \ne - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}3x = k\pi \\x \ne \pi + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
⇔ \(\left\{ \begin{array}{l}x = \frac{{k\pi }}{3}\\x \ne \pi + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
Mà x ∈ [2π,4π] nên: 2π ≤ \(k\frac{\pi }{3}\) ≤ 4π \(\left( {k \in \mathbb{Z}} \right)\)
Hay: 6 ≤ k ≤ 12
Số nghiệm thỏa mãn điều kiện là: \(\left\{ {2\pi ;\frac{7}{3}\pi ;\frac{8}{3}\pi ;3\pi ;\frac{3}\pi ;\frac{3}\pi ;4\pi } \right\}\)
Loại nghiệm 3π so với điều kiện
Vậy có 6 nghiệm thỏa mãn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |