Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Tam giác ABC có
AM = MB (M là trung điểm AB)
BN = NC (N là trung điểm BC)
⇒ MN là đường trung bình của tam giác ABC.
Vậy MN// AC , MN = \(\frac{1}{2}\) AC (1)
Tam giác ADC có
AQ = QD (Q là trung điểm DA)
DP = PC (P trung điểm DC)
⇒ QP là đường trung bình của tam giác ADC.
Vậy QP // AC, QP = \(\frac{1}{2}\) AC (2)
Từ (1) và (2) suy ra MN // PQ , MN = PQ.
Tứ giác MNPQ có hai cạnh đối song song và bằng nhau nên là hình bình hành.
b) Ta có MNPQ là hình vuông
BD vuông góc với AC và BD = AC hay ABCD là hình thoi.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |