Tìm các giá trị của tham số m để:
a) Hàm số y=1mx2−2mx+5 có tập xác định ℝ;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Hàm số y=1mx2−2mx+5có tập xác định là ℝ nếu và chỉ nếu mx2 – 2mx + 5 > 0 với mọi số thực x
- Khi m = 0 thì hàm số cho bởi công thức y=15lúc này hàm số có tập xác định là ℝ.
- Khi m ≠ 0 thì mx2 – 2mx + 5 > 0 với mọi số thực x nếu và chỉ nếu a = m > 0 và ∆’ = m2 – 5m < 0
Xét tam thức bậc hai: f(m) = m2 – 5m có:
a = 1 > 0, ∆m = (–5)2 – 4.1.0 = 25 > 0
f(m) = 0 có hai nghiệm phân biệt là: m = 0 hoặc m = 5
Do đó, m2 – 5m < 0 ⇔ 0 < m < 5
Vậy hàm số đã cho xác định trên ℝ nếu và chỉ nếu 0 ≤ m < 5.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |