Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, mặt phẳng (α) đi qua AB cắt cạnh SC, SD lần lượt tại M, N. Tính tỉ số \(\frac\) để (α) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có (α) ∩ (SCD) = NM ⇒ NM // CD.
Do đó (α) là (ABMN).
Mặt phẳng (α) chia khối chóp thành 2 phần có thể tích bằng nhau là:
\({V_{S.ABMN}} = {v_{ABCDNM}}\)
⇒ \({V_{S.ABMN}} = \frac{1}{2}{V_{S.ABCD}}\) (1)
Ta có: \({V_{S.ABC}} = {V_{S.ACD}} = \frac{1}{2}{V_{S.ABCD}}\)
Đặt \(\frac = x\) với (0 < x < 1).
Khi đó theo định lí Ta – let ta có: \(\frac = \frac = x\)
Mặt khác \(\frac{{{V_{S.ABM}}}}{{{V_{S.ABC}}}} = \frac.\frac.\frac = x\)
⇒ \({V_{S.ABM}} = \frac{x}{2}.{V_{S.ABCD}}\)
\(\frac{{{V_{S.AMN}}}}{{{V_{S.ACD}}}} = \frac.\frac.\frac = {x^2}\) ⇒ \({V_{S.AMN}} = \frac{{{x^2}}}{2}.{V_{S.ABCD}}\)
⇒ \({V_{S.ABMN}} = {V_{S.ABM}} + {V_{S.AMN}} = \left( {\frac{x}{2} + \frac{{{x^2}}}{2}} \right).{V_{S.ABCD}}\) (2)
Từ (1) và (2) suy ra \(\frac{x}{2} + \frac{{{x^2}}}{2} = \frac{1}{2}\) ⇔ x2 + x – 1 = 0
⇔ \(\left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 1 - \sqrt 5 }}{2}}\\{x = \frac{{ - 1 + \sqrt 5 }}{2}}\end{array}} \right.\)
Đối chiếu điều kiện của x ta được \(\frac = \frac{{ - 1 + \sqrt 5 }}{2}.\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |