Cho (d1): y = (2m + 1)x – 2m – 3 và d2: y = (m – 1)x + m. Tìm m để d1 và d2 cắt nhau tại 1 điểm nằm trên trục hoành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Để (d1) và (d2) cắt nhau thì:
2m + 1 ≠ m – 1
⇔ m ≠ −2
Để (d1) và (d2) cắt được trục hoành thì 2m + 1 ≠ 0 và m – 1 ≠ 0
⇔ m ≠ \(\frac{{ - 1}}{2}\)và m ≠ 1.
Ta tìm được giao điểm của d1 và d2 với Ox lần lượt là hai điểm:
\(A\left( {\frac;0} \right),B\left( {\frac{{ - m}};0} \right)\)
Để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành thì A trùng với B
Suy ra: \(\frac = \frac{{ - m}}\)
⇔ (2m + 3)(m – 1) = –m(2m + 1)
⇔ 2m2 + m – 3 = –2m2 – m
⇔ 4m2 + 2m – 3 = 0
⇔ \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |