Cho một đường tròn (O) và dây AB cố định, điểm C chuyển động trên cung lớn AB (C khác A và B). Chứng minh rằng tâm I của đường tròn nội tiếp tam giác ABC chuyển động trên một cung tròn cố định.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt ACB^=α. Ta có:
BAC^+ABC^+ACB^=180° (tổng ba góc trong một tam giác).
⇒BAC^+ABC^=180°−ACB^=180°−α.
Vì I là tâm đường tròn nội tiếp tam giác ABC nên AI, BI lần lượt là tia phân giác của hai góc A và B. Suy ra
IAB^=12BAC^; IBA^=12ABC^⇒IAB^+IBA^=12BAC^+ABC^=90°−α2
Lại có: AIB^+IAB^+IBA^=180° (tổng ba góc trong một tam giác).
⇒AIB^=180°−IAB^+IBA^=180°−90°−α2=90°+α2 không đổi.
Vì AB cố định, I thuộc nửa mặt phẳng chứa cung lớn AB có bờ là đường thẳng AB nên I luôn chuyển động trên cung chứa góc 90°+α2 dựng trên đoạn AB.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |