Cho tam giác ABC, AD là tia phân giác của góc A; \[AB < AC\]. Trên tia đối của tia DA lấy điểm I sao cho \[\widehat {ACI} = \widehat {BDA}\]. Chứng minh rằng
\[\Delta ADB\~\Delta ACI;\,\,\Delta ADB\sim\Delta CDI\]
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét \[\Delta ADB\] và \[\Delta ACI\] có: \[\widehat {BAD} = \widehat {IAC}\] (do AD là phân giác), \[\widehat {ACI} = \widehat {BDA}\] (giả thiết) suy ra \[\Delta ADB\~\Delta ACI\] (g.g)
Do \[\Delta ADB\~\Delta ACI\] nên \[\widehat {ABD} = \widehat {AIC}\]
Xét \[\Delta ADB\] và \[\Delta CDI\] có: \[\widehat {ABD} = \widehat {AIC};\,\,\widehat {ADB} = \widehat {CDI}\] (đối đỉnh) suy ra \[\Delta ADB\sim\Delta CDI\] (g.g)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |