Cho hình chóp tứ giác đều S.ABCD có chiều cao h, góc ở đỉnh của mặt bên bằng 60°. Tính thể tích hình chóp ?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi O = AC ∩ BD
Vì chóp S.ABCD đều nên SO ⊥ (ABCD)
Đặt SA = SB = SC = SD = a
∆SCD có: SC = SD; \(\widehat {CSD} = 60^\circ \Rightarrow \Delta SCD\)đều ⇒ CD = SC = SD = a
⇒ Hình vuông cạnh ABCD cạnh a ⇒ AC = BD = \(a\sqrt 2 \Rightarrow OC = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)
SO ⊥ (ABCD) ⇒ SO ⊥ OC ⇒ ∆SOC vuông tại O
\( \Rightarrow SO = \sqrt {S{C^2} - O{C^2}} \Rightarrow h = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2} \Rightarrow a = h\sqrt 2 \)
\( \Rightarrow {S_{ABCD}} = {a^2} = {(h\sqrt 2 )^2} = 2{h^2}\)
Vậy \({V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}h.2{h^2} = \frac{{2{h^3}}}{3}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |