Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC và đường cao AH. Gọi M, N lần lượt là trung điểm của AB, AC. Đường tròn ngoại tiếp tam giác BHM cắt đường tròn ngoại tiếp tam giác CNH tại E. Chứng minh AMEN là tứ giác nội tiếp và HE đi qua trung điểm của MN.

Cho tam giác ABC và đường cao AH. Gọi M, N lần lượt là trung điểm của AB, AC. Đường tròn ngoại tiếp tam giác BHM cắt đường tròn ngoại tiếp tam giác CNH tại E. Chứng minh AMEN là tứ giác nội tiếp và HE đi qua trung điểm của MN.

1 Xem trả lời
Hỏi chi tiết
50
0
0
Phạm Văn Bắc
11/09/2024 15:56:53

Ta có: MEN = 360° - ( MEH + NEH )

                     = 360° - ( 180° - ABC + 180° - ACB)

                     = ABC + ACB = 180° - BAC

Suy ra MEN + MAN = 180° hay tứ giác AMEN là tứ giác nội tiếp.

Kẻ MK ⊥ BC, giả sử HE cắt MN tại I thì IH là cát tuyến của hai đường tròn (BMH), (CNH).

Lại có MB = MH = MA (tính chất trung tuyến tam giác vuông). Suy ra tam giác MBH cân tại M.

=> KB = KH => MK luôn đi qua tâm đường tròn ngoại tiếp tam giác MBH.

Hay MN là tiếp tuyến của (MBH) suy ra IM2= IE.IH                (1)

Tương tự ta cũng có MN là tiếp tuyến của (HNC) suy ra IN2= IE.IH.                    (2)

Từ (1) và (2) suy ra IM = IN.

Vậy HE đi qua trung điểm của MN.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×