Bài tập  /  Bài đang cần trả lời

Đặt vào hai đầu đoạn mạch RLC mắc nối tiếp (cuộn dây thuần cảm, tụ điện có điện dung C thay đổi được) một điện áp xoay chiều \(u = U\sqrt 2 \cos \omega {\rm{t}}\) (V). Trong đó U và \(\omega \) không đổi. Cho C biến thiên thu được đồ thị biểu điện áp trên tụ theo dung kháng \({{\rm{Z}}_{\rm{C}}}\) như hình vẽ. Coi \(72,11 = 20\sqrt {13} \) Điện trở của mạch là

Đặt vào hai đầu đoạn mạch RLC mắc nối tiếp (cuộn dây thuần cảm, tụ điện có điện dung C thay đổi được) một điện áp xoay chiều \(u = U\sqrt 2 \cos \omega {\rm{t}}\) (V). Trong đó U và \(\omega \) không đổi. Cho C biến thiên thu được đồ thị biểu điện áp trên tụ theo dung kháng \({{\rm{Z}}_{\rm{C}}}\) như hình vẽ. Coi \(72,11 = 20\sqrt {13} \) Điện trở của mạch là
1 Xem trả lời
Hỏi chi tiết
13
0
0
Tô Hương Liên
11/09/2024 15:55:02

Đáp án: \(30\Omega \)

Phương pháp giải:

Hiệu điện thế giữa hai đầu tụ điện: \({U_C} = \frac{{U{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)

Định lí Vi – et: {x1+x2=-bax1x2=ca

Giải chi tiết:

Hiệu điện thế giữa hai đầu tụ điện là:

\({U_C} = I.{Z_C} = \frac{{U{Z_C}}}{Z} = \frac{{U{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{{U{Z_C}}}{{\sqrt {{{\left( {{R^2} + {Z_L}} \right)}^2} - 2{Z_L}{Z_C} + {Z_C}^2} }}\)

\( \Rightarrow {U_C} = \frac{U}{{\sqrt {\left( {{R^2} + {Z_L}^2} \right)\frac{1}{{{Z_C}^2}} - 2{Z_L}\frac{1}{} + 1} }}{\mkern 1mu} {\mkern 1mu} \left( 1 \right)\)

Từ (1), ta có: \(\left( {{R^2} + {Z_L}^2} \right)\frac{1}{{{Z_C}^2}} - 2{Z_L}\frac{1}{} + 1 - {\left( {\frac{U}{}} \right)^2} = 0\)

Với giá trị của dung kháng \(\left\{ {\begin{array}{*{20}{l}}{{Z_} = \frac{3}{\mkern 1mu} {\mkern 1mu} \Omega }\\{{Z_} = 125{\mkern 1mu} {\mkern 1mu} \Omega }\end{array}} \right.\), cho cùng 1 giá trị hiệu điện thế: \({U_} = {U_} = 100{\mkern 1mu} {\mkern 1mu} \left( V \right)\)

Khi \({Z_C} \to \infty \) thì \({U_C} = U = 72,11{\mkern 1mu} {\mkern 1mu} V = 20\sqrt {13} {\mkern 1mu} {\mkern 1mu} V\)

\( \Rightarrow 1 - {\left( {\frac{U}{}} \right)^2} = 1 - {\left( {\frac{{20\sqrt {13} }}} \right)^2} = 0,48\)

Theo định lí Vi – et, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{ - b}}{a}}\\{{x_1}{x_2} = \frac{c}{a}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{} + \frac{1}{} = \frac{{2{Z_L}}}{{{R^2} + {Z_L}^2}}}\\{\frac{1}{}.\frac{1}{} = \frac{{0,48}}{{{R^2} + {Z_L}^2}}}\end{array}} \right.\)

\( \Rightarrow {R^2} + {Z_L}^2 = \frac{{0,48}}{{\frac{1}{}.\frac{1}{}}} = \frac{{0,48}}{{\frac{1}{{\frac{3}}}.\frac{1}}} = 2500\)

⇒11253+1125=2⁢ZL2500⇒ZL=40⁢(Ω⁢ )

⇒R=2500-402⁢⁢ =30⁢(Ω⁢ ).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×