Bài tập  /  Bài đang cần trả lời

Cho số phức \[z\] thỏa mãn \[\left| {z - 1} \right| = 5\]. Biết tập hợp các điểm biểu diễn số phức \[w\] xác định bởi \[w = \left( {2 + 3i} \right).\bar z + 3 + 4i\] là một đường tròn bán kính \[R.\] Tính \[R.\]

Cho số phức \[z\] thỏa mãn \[\left| {z - 1} \right| = 5\]. Biết tập hợp các điểm biểu diễn số phức \[w\] xác định bởi \[w = \left( {2 + 3i} \right).\bar z + 3 + 4i\] là một đường tròn bán kính \[R.\] Tính \[R.\]

1 trả lời
Hỏi chi tiết
11
0
0
Phạm Minh Trí
11/09 15:54:45

Đáp án: \(R = 5\sqrt {13} \)

Phương pháp giải:

Thế số phức từ yêu cầu vào giả thiết để biểu diễn môđun liên quan đến số phức w

Giải chi tiết:

Ta có \(\left| {z - 1} \right| = \left| {\overline {z - 1} } \right| = \left| {\bar z - 1} \right| = 5\) mà \(w = \left( {2 + 3i} \right)\bar z + 3 + 4i \Leftrightarrow \bar z = \frac\)

Suy ra \[\left| {\frac - 1} \right| = 5 \Leftrightarrow \left| {\frac} \right| = 5 \Leftrightarrow \frac{{\left| {w - 5 - 7i} \right|}}{{\left| {2 + 3i} \right|}} = 5 \Leftrightarrow \left| {w - 5 - 7i} \right| = 5\sqrt {13} \]

Do đó, tập hợp điểm biểu diễn số phức \[w\] là đường tròn tâm \[I\left( {5;7} \right),\], bán kính \[R = 5\sqrt {13} .\]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k