Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để 2 bạn A và B không ngồi cạnh nhau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xếp 5 học sinh A, B, C, D, E vào 1 dãy 5 ghế thẳng hàng có 5! cách xếp ⇒ n(Ω) = 5! =120.
Gọi X là biến cố: “2 bạn A và B không ngồi cạnh nhau” ⇒ Biến cố đối \(\overline X \): “ 2 bạn A và B ngồi cạnh nhau”
Buộc 2 bạn A và B coi là 1 phần tử, có 2! Cách đổi chỗ 2 bạn A và B trong buộc này.
Bài toán trở thành xếp 4 bạn (AB), C, D, E vào dãy 4 ghế thẳng hàng ⇒ Có 4! cách xếp.
\( \Rightarrow n\left( {\overline X } \right) = 2!.4! = 48\)
\( \Rightarrow P\left( {\overline X } \right) = \frac{{n\left( {\overline X } \right)}}{{n\left( \Omega \right)}} = \frac = \frac{2}{5}\)
Vậy P(X) = 1 – \(P\left( {\overline X } \right) = 1 - \frac{2}{5} = \frac{3}{5}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |