Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm), AC cắt OM tại E; MB cắt nửa đường tròn ( O ) tại D (D khác B). Chứng minh AMCO và AMDE là các tứ giác nội tiếp đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì MA, MC là tiếp tuyến nên MAO = MCO = 90° là tứ giác nội tiếp đường tròn đường kính MO.
ADB = 90° (góc nội tiếp chắn nửa cung tròn)
=> ADM = 90°. (1)
Lại có: OA = OC = R, MA = MC (tính chất tiếp tuyến).
Suy ra OM là đường trung trực của AC.
=> AEM = 90°. (2)
Từ (1) và (2) suy ra AMDE là tứ giác nội tiếp đường tròn đường kính MA.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |