Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh ∆ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac = \frac\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) OA = OB = 4, OH = 1 \( \Rightarrow \) AH = 3, HB = 5
Ta có: AB là đường kính của (O) \( \Rightarrow \)\(\widehat {ACB} = 90^\circ \)
\( \Rightarrow \)∆ABC vuông tại C.
Mà CH\( \bot \)AB \( \Rightarrow \)CH2 = HA. HB = 15
\( \Rightarrow \)AC2 = CH2 + HA2 = 24 \( \Rightarrow \)\(AC = 2\sqrt 6 \).
b) Vì AB\( \bot \)CD \( \Rightarrow \)AB là trung trực của CD
\( \Rightarrow \)BC = BD \( \Rightarrow \)∆CBD cân tại B.
Lại có: \(\widehat {EAC} = \widehat {CBA} = \widehat {HBD}\)
\( \Rightarrow \)∆ECA ᔕ ∆DHB (g.g)
\( \Rightarrow \frac = \frac\).
c) Vì I, O là trung điểm AE, AB
\( \Rightarrow \)IO // EB \( \Rightarrow \)IO\( \bot \)AC (BE\( \bot \)AC) \( \Rightarrow \)A, C đối xứng với nhau qua OI
\( \Rightarrow \)\(\widehat {ICO} = \widehat {IAO} = 90^\circ \)
\( \Rightarrow \)IC là tiếp tuyến của (O).
\( \Rightarrow \)\(\widehat {ICQ} = \widehat {CBI}\)
d) Gọi AF ∩ BI = {G}
Vì IC, IA là tiếp tuyến của (O) \( \Rightarrow \)IC = IA tương tự FC = FB
Mà AI // BF \( \Rightarrow \)\(\frac = \frac = \frac\)
\( \Rightarrow \)GC // BF \( \Rightarrow \)GC\( \bot \)AB \( \Rightarrow \)C, G, H thẳng hàng
\( \Rightarrow \)IB, HC, AF đồng quy.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |