Cho tam giác ABC vuông tại A có AB = 15, AC = 20.
a) Tính tỉ số lượng giác của B.
b) Vẽ đường cao AH. Tính độ dài các đoạn AH, HB, HC.
c) Gọi D và E lần lượt là trung điểm của BH và AH .Tia CE cắt AD tại M. Chứng minh CM =AM. cosACM^.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có ΔABC vuông tại A
⇒ BC2 = AB2 + AC2 = 625
⇒ BC = 25
⇒ sinB =ACBC=45,cosB=ABBC=35,tanB=43,cotB=34
b) Ta có AH ⊥ BC
⇒ AH.BC = AB.AC(= 2SABC)
⇒ AH = AB.ACBC=12
⇒ HB = AB2−AH2=9, HC = BC – HB = 25 – 9 = 16
c) Ta có D, E là trung điểm HB, HA
⇒ DE là đường trung bình ΔHAB
⇒ DE // AB
⇒ DE ⊥ AC vì AB⊥AC
Mà AH ⊥ BC ⇒AH ⊥ CD, AH ∩ DE = E
⇒ E là trực tâm ΔADC ⇒ CE ⊥ AD
⇒ CM ⊥ AD
⇒ AMC^=90°
⇒ cosACM^ = CMAC
⇒ CM = AC.cos
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |