Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).
Tìm toạ độ của điểm C thuộc trục hoành sao cho tam giác ABC vuông tại A. Tính chu vi và diện tích của tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vì tam giác ABC vuông tại A nên AB ⊥ AC hay \(\overrightarrow {AB} \bot \overrightarrow {AC} \)
Do đó \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)
Giả sử C(x; 0) là điểm thuộc trục hoành.
Với A(2; 1), B(4; 3) và C(x; 0) ta có:
\(\overrightarrow {AB} = \left( {2;2} \right)\) và \(\overrightarrow {AC} = \left( {x - 2; - 1} \right)\)
Khi đó \(\overrightarrow {AB} .\overrightarrow {AC} = 0\) 2(x – 2) + 2(–1) = 0
2x – 4 – 2 = 0
2x = 6
x = 3
Vậy C(3; 0).
\( \Rightarrow \overrightarrow {AC} = \left( {1; - 1} \right)\)
Ta có:
• \(\overrightarrow {AB} = \left( {2;2} \right) \Rightarrow AB = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)
• \(\overrightarrow {AC} = \left( {1; - 1} \right) \Rightarrow AC = \sqrt {{1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \)
• \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = \sqrt {10} \) (theo định lí Pythagore)
Khi đó chu vi tam giác ABC là:
AB + AC + BC = \(2\sqrt 2 + \sqrt 2 + \sqrt {10} = 3\sqrt 2 + \sqrt {10} \)(đơn vị độ dài)
Diện tích tam giác ABC là:
\(\frac{1}{2}.AB.AC = \frac{1}{2}.2\sqrt 2 .\sqrt 2 = 2\) (đơn vị diện tích)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |