Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.
Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
ABCD là hình bình hành có M, N lần lượt là trung điểm của BC, AD
Nên MN là đường trung bình của hình bình hành
MN // AB // DC và MN = AB = DC.
\(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {MN} \)
Vậy những vectơ bằng vectơ \(\overrightarrow {AB} \) là: \(\overrightarrow {AB} ;\overrightarrow {DC} ;\overrightarrow {MN} .\)
Lại có O là tâm hình bình hành nên O là trung điểm của AC và BD
Do đó NO là đường trung bình của ADC
NO // DC
Chứng minh tương tự ta cũng có OM // DC
Do đó ba điểm M, O, N thẳng hàng.
Vậy những vectơ cùng hướng với \(\overrightarrow {AB} \) là: \[\overrightarrow {AB} ,\overrightarrow {NO} ,\overrightarrow {OM} ,\overrightarrow {NM} ,\overrightarrow {DC.} \]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |