Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Với A(–2; 1), B(1; 4) và C(5; −2) ta có:
\(\overrightarrow {AB} \) = (3; 3) và \(\overrightarrow {AC} \) = (7; –3)
Vì \(\frac{3}{7} \ne \frac{3}{{ - 3}} = - 1\) nên hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương
Do đó ba điểm A, B, C không thẳng hàng
Vậy A, B, C là ba đỉnh của một tam giác.
Vì G là trọng tâm của tam giác ABC nên ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{ - 2 + 1 + 5}}{3} = \frac{4}{3}\\{y_G} = \frac{3} = 1\end{array} \right.\) \( \Rightarrow G\left( {\frac{4}{3};1} \right)\)
Vậy tọa độ trọng tâm của tam giác ABC là: \(G\left( {\frac{4}{3};1} \right)\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |