a) Chứng tỏ rằng nếu lợi nhuận P(x) là cực đại thì doanh thu biên bằng chi phí biên.
b) Cho C(x) = 16 000 + 500x – 1,6x2 + 0,004x3 là hàm chi phí và p(x) = 1 700 – 7x là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa hóa lợi nhuận.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có lợi nhuận P(x) = R(x) – C(x) trong đó R(x) là doanh thu và C(x) là chi phí.
Khi lợi nhuận đạt cực đại tại x0 thì P'(x0) = R'(x0) – C'(x0) = 0 hay R'(x0) = C'(x0), nói cách khác là doanh thu biên bằng chi phí biên.
b) Ta có hàm lợi nhuận:
P(x) = x.p(x) – C(x) = 1 700x – 7x2 – 16 000 – 500x + 1,6x2 – 0,004x3
= −16 000 + 1200x – 5,4x2 – 0,004x2.
Suy ra, P'(x) = 1200 – 10,8x – 0,012x2
P'(x) = 0 ⇔x = 100 (do x ≥ 0).
Bảng biến thiên như sau:
Vậy mức sản xuất tối đa hóa lợi nhuận là 100 đơn vị hàng hóa.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |