Một lớp 12 có 40 học sinh. Trong đó có 22 em đăng kí thi Đại học quốc gia (ĐHQG), 25 em đăng kí thi Đại học bách khoa (ĐHBK), 3 em không đăng kí thi cả hai đại học này. Chọn ngẫu nhiên một học sinh. Biết rằng em đó đăng kí thi ĐHQG. Xác suất em đó đăng kí thi ĐHBK là
A. \(\frac{6}\).
B. \(\frac{7}\).
C. \(\frac{8}\).
D. \(\frac{5}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: D
Gọi A là biến cố: “Em đó đăng kí thi ĐHQG”;
B là biến cố: “Em đó đăng kí thi ĐHBK”.
Ta có biến cố A ∪ B: “Em đó đăng kí thi ĐHQG hoặc ĐHBK” là biến cố dối của biến cố: “Em đó không đăng kí thi cả hai đại học này”.
P(A) = \(\frac\); P(B) = \(\frac\); P(\(\overline A \overline B \)) = \(\frac{3}\).
Từ đó: P(A ∪ B) = 1 – P(\(\overline A \overline B \)) = 1 − \(\frac{3}\) = \(\frac\).
P(AB) = P(A) + P(B) – P(A ∪ B) = \(\frac + \frac - \frac = \frac\).
Vậy P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac:\frac = \frac = \frac{5}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |