Cho ∆ABC vuông tại A đường cao AH, AD là tia phân giác \(\widehat {HAC}\).
a. Chứng minh ∆ABD cân tại B.
b. Cho BC = 25 cm, HD = 6 cm. Tính AB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Có \(\widehat {BAH} = \widehat {BCA}\)(vì cùng phụ với \(\widehat {HAC}\))
\( \Rightarrow \widehat {BAH} + \widehat {HAD} = \widehat {BCA} + \widehat {DAC}\)(vì AD là tia phân giác \(\widehat {HAC}\))
\( \Rightarrow \widehat {BAD} = \widehat {BCA} + \widehat {DAC}\)
Xét ΔADC có \(\widehat {ADB}\)là góc ngoài tại đỉnh D \( \Rightarrow \widehat {ADB} = \widehat {BCA} + \widehat {DAC}\)
\( \Rightarrow \widehat {BAD} = \widehat {ADB}\)
⇒ ΔABD cân tại B.
b. Xét ΔABD cân tại B ⇒ AB = BD
Xét ΔABC vuông tại A
⇒ AB² = BH. BC = (BD – HD). BC = (AB – 6). 25 = 25AB – 150
⇒ AB² – 25AB + 150 = 0
⟺ (AB – 15)(AB – 10) = 0
⟺ AB = 15 hoặc AB = 10
Vậy AB = 15cm, hoặc AB = 10 cm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |