Trong mặt phẳng Oxy cho ba điểm A(2; 2); B(1; 3); C(– 1; 1).
a) Chứng minh OABC là một hình chữ nhật;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
⇒OA→=CB→ nên hai vectơ cùng phương hay OA song song với BC và OA = BC = 22+22=22.
Do đó tứ giác OABC là hình bình hành.
Ta có OA→.OC→=2.(−1)+2.1=0 ⇒OA→⊥OC→ hay OA ⊥ OC
Tứ giác OABC là hình bình hành và có 1 góc vuông nên tứ giác OABC là hình chữ nhật.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |