Bài tập  /  Bài đang cần trả lời

Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau: G: “Không có con xúc xắc nào xuất hiện mặt 6 chấm”; H: “Số chấm xuất hiện con xúc xắc I là số lẻ và số chấm xuất hiện trên con xúc xắc II lớn hơn 4”; K: “Số chấm xuất hiện trên cả hai con xúc xắc lớn hơn 2”.

Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất của các biến cố sau:

G: “Không có con xúc xắc nào xuất hiện mặt 6 chấm”;

H: “Số chấm xuất hiện con xúc xắc I là số lẻ và số chấm xuất hiện trên con xúc xắc II lớn hơn 4”;

K: “Số chấm xuất hiện trên cả hai con xúc xắc lớn hơn 2”.

1 Xem trả lời
Hỏi chi tiết
12
0
0
Phạm Văn Phú
11/09 22:45:33

Không gian mẫu \(\Omega \) = {(a, b), 1 ≤ a, b ≤ 6 trong đó a và b là các số tự nhiên}.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Xúc xắc II

Xúc xắc I

1

2

3

4

5

6

1

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

2

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

3

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

4

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(4, 6)

5

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

(5, 6)

6

(6, 1)

(6, 2)

(6, 3)

(6, 4)

(6, 5)

(6, 6)

Mỗi ô trong bảng là một kết quả có thể. Có 36 kết quả có thể là đồng khả năng.

− Các kết quả thuận lợi cho biến cố G là các cặp số (a, b), trong đó 1 ≤ a, b ≤ 5.

Có 25 kết quả thuận lợi cho biến cố G. Vậy \(P\left( G \right) = \frac.\)

− Có 6 kết quả thuận lợi cho biến cố H là (1, 5); (3, 5); (5, 5); (1, 6); (3, 6); (5, 6).

Vậy \(P\left( H \right) = \frac{6} = \frac{1}{6}.\)

− Các kết quả thuận lợi cho biến cố K là các cặp số (a, b) trong đó 3 ≤ a, b ≤ 6.

Có 32 kết quả thuận lợi cho biến cố K. Vậy \(P\left( K \right) = \frac = \frac{8}{9}.\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×