Hãy tính độ dài của cạnh của bát giác đều nội tiếp một đường tròn bán kính \(\sqrt 2 \) cm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi AB là một cạnh của bát giác đều và (O) là đường tròn ngoại tiếp bát giác đều.
Khi đó OAB là tam giác cân tại O có cạnh bên \(OA = OB = \sqrt 2 \) cm và góc ở đỉnh \(\widehat {AOB} = \frac{{360^\circ }}{8} = 45^\circ .\)
Kẻ đường cao AH của tam giác OAB. Khi đó AHO là tam giác vuông tại H.
Theo định lí Pythagore, ta có OA2 = AH2 + HO2 = 2HA2.
Suy ra \(HO = AH = \frac{{\sqrt 2 }}{{\sqrt 2 }} = 1\) (cm).
Áp dụng hệ thức lượng cho tam giác AHB vuông tại H, ta được:
\(AB = \sqrt {A{H^2} + H{B^2}} = \sqrt {A{H^2} + {{\left( {OB - HO} \right)}^2}} \)
\( = \sqrt {{1^2} + {{\left( {\sqrt 2 - 1} \right)}^2}} = \sqrt {4 - 2\sqrt 2 } \) (cm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |