Cho biết DE là tiếp tuyến của đường tròn trong Hình 4.
Số đo θ của góc \(\widehat {BAD}\) trong hình là
A. 28°.
B. 52°.
C. 56°.
D. 26°.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: B
Vì DE là tiếp tuyến của đường tròn (O) nên DE ⊥ OA tại A, suy ra \(\widehat {DAO} = 90^\circ .\)
Do đó \(\widehat {DAB} + \widehat {BAO} = 90^\circ \) hay \(\widehat {DAB} = 90^\circ - \widehat {BAO}.\,\,\left( 1 \right)\)
Xét ∆OAB cân tại O (do OA = OB) có:
\(\widehat {BAO} = \frac{{180^\circ - \widehat {AOB}}}{2} = 90^\circ - \frac{1}{2}\widehat {AOB}.\)
Mà \(\widehat {ACB} = \frac{1}{2}\widehat {AOB}\) (góc nội tiếp và góc ở tâm cùng chắn cung AB của đường tròn (O)).
Do đó \(\widehat {BAO} = 90^\circ - \widehat {ACB}\) hay \(\widehat {ACB} = 90^\circ - \widehat {BAO}.\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(\theta = \widehat {DAB} = \widehat {ACB} = 52^\circ .\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |