Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Dựa vào phương trình tổng quát của đường thẳng ∆: 2x – y + 5 = 0. Đường thẳng ∆ có một vectơ pháp tuyến là \[\overrightarrow n = \left( {2; - 1} \right)\] nên các vectơ pháp tuyến của ∆ có dạng là \[\overrightarrow {n'} = \left( {2t; - t} \right)\]. Theo giả thiết ta có:
\(\left| {\overrightarrow {n'} } \right| = \sqrt {{{\left( {2t} \right)}^2} + {{\left( { - t} \right)}^2}} = 2\sqrt 5 \)
⇔ 4t2 + t2 = 20
⇔ 5t2 = 20
⇔ t2 = 4
⇔ t = ±2
Với t = 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: \(\overrightarrow {{n_1}'} \) = (4; –2)
Với t = – 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: \(\overrightarrow {{n_2}'} \) = (–4; 2).
Vậy có hai vectơ pháp tuyến thỏa mãn là \(\overrightarrow {{n_1}'} \) = (4; –2) và \(\overrightarrow {{n_2}'} \) = (–4; 2).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |