Với các chữ số 0, 2, 3, 5, 6, 7, 9. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 3 lần, chữ số 6 có mặt đúng 2 lần và các chữ số khác, mỗi chữ số có mặt đúng 1 lần?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Số các số có thể có bằng số hoán vị của 10 chữ số của , trong đó chữ số 5 lặp lại 3 lần, chữ số 6 lặp lại 2 lần 10!3! . 2!.
Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 5 lặp lại 3 lần, chữ số 6 lặp lại 2 lần 9!3! . 2!.
Do đó, số các số phải tìm là: 10!3! . 2!−9!3! . 2!=272 160 (số)
Vậy có 272 160 số thỏa yêu cầu đề bài.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |