Tổng các nghiệm của phương trình 2cos 3x(2cos 2x + 1) = 1 trên đoạn [−4π; 6π].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: 2cos 3x(2cos 2x + 1) = 1
Û 4cos 3x.cos 2x + 2cos 3x = 1
Û 2(cos 5x + cos x) + 2cos 3x = 1
Û 2cos 5x + 2cos x + 2cos 3x = 1 (*)
Ta nhận thấy x = kp không phải nghiệm của phương trình đã cho.
Ta có: (*) Û 2sin x(cos x + cos 3x + cos 5x) = sin x
Û 2sin x.cos x + 2sin x.cos 3x + 2sin x.cos 5x = sin x
Û sin 2x + sin 4x − sin 2x + sin 6x − sin 4x = sin x
Û sin 6x = sin x
⇔6x=x+k2π6x=π−x+k2π⇔x=k2π5x=π7+k2π7
Xét trên chu kì từ [0; 2p] ta có các nghiệm (loại đi nghiệm x = kp)
x∈2π5; 4π5; 6π5; 8π5; π7; 3π7; 5π7; 9π7; 11π7; 13π7
Tổng các nghiệm này trên đoạn [0; 2π] bằng 10p.
Do đó tổng các nghiệm của phương trình đã cho trên đoạn [−4π; 6π] là:
5.10p + (−2 − 1 + 0 + 1 + 2).2p = 50p.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |