Tìm số nguyên x để đa thức A(x) = 2x3 – 3x2 + 2x + 2 chia hết cho đa thức B(x) = x2 + 1.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta thực hiện đặt tính chia đa thức như sau:
Để đa thức A(x) = 2x3 – 3x2 + 2x + 2 chia hết cho đa thức B(x) = x2 + 1 thì 5 ⁝ (x2 + 1)
Hay (x2 + 1) ∈ Ư(5) = {–1; 1; –5; 5}.
Mà x2 + 1 ≥ 1 với mọi số nguyên x.
Do đó (x2 + 1) ∈ {1; 5}.
• Với x2 + 1 = 1 suy ra x = 0 (thỏa mãn x là số nguyên)
• Với x2 + 1 = 5
Suy ra x2 = 4
Do đó x = 2 (thỏa mãn) hoặc x = –2 (thỏa mãn)
Vậy có 3 giá trị của x thỏa mãn đề bài là x ∈ {0; –2; 2}.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |