Chứng minh miền tam giác ABC (như hình vẽ) là miền nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}x \ge 0\\5x - 4y \le 10\\4x + 5y \le 10\end{array} \right.\].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Dựa vào hình vẽ, ta thấy:
Đường thẳng (d1) là trục tung Oy nên có phương trình x = 0.
Đường thẳng (d2) đi qua hai điểm (0;2) và \[\left( {\frac{5}{2};0} \right)\] nên có phương trình:
\[\frac{x}{{\frac{5}{2}}} + \frac{y}{2} = 1 \Leftrightarrow \frac{5} + \frac{y}{2} = 1\]
Û 4x + 5y = 10
Đường thẳng (d3) đi qua hai điểm (2; 0) và \[\left( {0;\,\, - \frac{5}{2}} \right)\] nên có phương trình:
\[\frac{x}{2} + \frac{y}{{ - \frac{5}{2}}} = 1 \Leftrightarrow \frac{x}{2} - \frac{5} = 1\]
Û 5x – 4y = 10
Miền nghiệm gần phần mặt phẳng nhận giá trị x dương (kể cả bờ (d1)).
Lại có (0; 0) là nghiệm của cả hai bất phương trình 4x + 5y ≤ 10 và 5x – 4y ≤ 10.
Vậy miền tam giác ABC biểu diễn nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}x \ge 0\\5x - 4y \le 10\\4x + 5y \le 10\end{array} \right.\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |