Bài tập  /  Bài đang cần trả lời

Gọi S là tập hợp giá trị của m sao cho 10m Î ℤ và phương trình \(2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = {\log _{\sqrt {mx - 5} }}\left( {{x^2} + 2x - 6} \right)\) có nghiệm duy nhất. Tìm số phần tử của S.

Gọi S là tập hợp giá trị của m sao cho 10m Î ℤ và phương trình \(2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = {\log _{\sqrt {mx - 5} }}\left( {{x^2} + 2x - 6} \right)\) có nghiệm duy nhất. Tìm số phần tử của S.

1 Xem trả lời
Hỏi chi tiết
17
0
0
Tôi yêu Việt Nam
12/09/2024 15:05:57

Ta có: 2x2 − 5x + 4 > 0 với mọi x nên phương trình:

\(2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = {\log _{\sqrt {mx - 5} }}\left( {{x^2} + 2x - 6} \right)\)

\( \Leftrightarrow 2{\log _{mx - 5}}\left( {2{x^2} - 5x + 4} \right) = 2{\log _{mx - 5}}\left( {{x^2} + 2x - 6} \right)\)

\( \Leftrightarrow \left\{ \begin{array}{l}mx - 5 > 0\\mx - 5 \ne 1\\{x^2} + 2x - 6 > 0\\2{x^2} - 5x + 4 = {x^2} + 2x - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}mx > 5\\mx \ne 6\\{x^2} + 2x - 6 > 0\\{x^2} - 7x + 10 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}mx > 5\\mx \ne 6\\{x^2} + 2x - 6 > 0\\\left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}mx > 5\\mx \ne 6\\\left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\end{array} \right.\)

Phương trình có nghiệm duy nhất tương đương với ta nhận nghiệm x = 2 và loại x = 5 hoặc nhận nghiệm x = 5 và loại x = 2.

+ Trường hợp 1: Nhận nghiệm x = 2 và loại x = 5

Điều này tương đương với \(\left\{ \begin{array}{l}2m > 5\\2m \ne 6\\\left[ \begin{array}{l}5m \le 5\\5m = 6\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{5}{2}\\m \ne 3\\\left[ \begin{array}{l}m \le 1\\m = \frac{6}{5}\end{array} \right.\end{array} \right.\) (vô lí)

+ Trường hợp 2: Nhận nghiệm x = 5 và loại x = 2

Điều này tương đương với \(\left\{ \begin{array}{l}5m > 5\\5m \ne 6\\\left[ \begin{array}{l}2m \le 5\\2m = 6\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\m \ne \frac{6}{5}\\\left[ \begin{array}{l}m \le \frac{5}{2}\\m = 3\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 3\\\left\{ \begin{array}{l}1 < m \le \frac{5}{2}\\m \ne \frac{6}{5}\end{array} \right.\end{array} \right.\)

Suy ra: \(\left[ \begin{array}{l}10m = 30\\\left\{ \begin{array}{l}10 < 10m \le 25\\m \ne 12\end{array} \right.\end{array} \right.\)

Vì 10m Î ℤ nên 10m Î {11; 13; 14; …; 25} È {30}

Trong tập hợp này có 15 phần tử nên tập hợp S cũng có 15 phần tử.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×