Cho tam giác ABC có A^=80°, B^=60°. Hai tia phân giác của góc B và C cắt nhau tại I. Vẽ tia phân giác ngoài tại đỉnh B cắt tia CI tại D. Chứng minh rằng BDC^=C^.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
* Tìm cách giải. Đề bài cho số đo A^; B^ nên hiển nhiên tính được số đo góc C. Dựa theo kết luận của bài toán thì chúng ta chỉ cần tính số đo góc BCD. Khi tính toán số đo góc, chúng ta lưu ý giả thiết có yếu tố tia phân giác.
* Trình bày lời giải.
∆ABC có A^+B^+C^=180° (tính chất)
80°+60°+C^=180°; C^=40°.
∆ABC có ABx^=A^+C^=120°
⇒B1^=B2^=12ABx^=60°
Ta có: C1^=C2^=12C^=20°.
∆BCD có: BDC^+C1^+CBD^=180°
BDC^+20°+60°+60°=180°⇒BDC^=40°
Do đó BDC^=C^.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |