Đường tròn đi qua ba điểm A(1; 1); B(3; 1); C(0; 4).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải:
Giả sử tâm của đường tròn là điểm I(a; b).
Ta có IA = IB = IC ⇔ IA2 = IB2 = IC2.
Vì IA2 = IB2, IB2 = IC2 nên
\(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 2a + 1 = {a^2} - 6a + 9\\{a^2} - 6a + 9 + {b^2} - 2b + 1 = {a^2} + {b^2} - 8b + 16\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}4a = 8\\ - 6a + 6b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)
Đường tròn tâm I(2; 3) bán kính R = IC = \(\sqrt {{a^2} + {{\left( {4 - b} \right)}^2}} \)\( = \sqrt {{2^2} + {{\left( {4 - 3} \right)}^2}} = \sqrt 5 \).
Phương trình đường tròn là \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = {\left( {\sqrt 5 } \right)^2}\).
Vậy phương trình đường tròn là (x – 2)2 + (y – 3)2 = 5.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |